Siirry suoraan sisältöön

Introduction to Data Mining (3 op)

Toteutuksen tunnus: TX00EL41-3001

Toteutuksen perustiedot


Ilmoittautumisaika
04.05.2020 - 27.07.2020
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
03.08.2020 - 07.08.2020
Toteutus on päättynyt.
Opintopistemäärä
3 op
Virtuaaliosuus
3 op
Toteutustapa
Etäopetus
Toimipiste
Karaportti 2
Opetuskielet
englanti
Paikat
0 - 40
Koulutus
Degree Programme in Information Technology
Tieto- ja viestintätekniikan tutkinto-ohjelma
Opettajat
Agathe Merceron
Ryhmät
ICTSUMMER
ICT Summer School
Opintojakso
TX00EL41
Toteutukselle TX00EL41-3001 ei löytynyt varauksia!

Tavoitteet

Knowledge and understanding:
The students will know some basic concepts and some algorithms of data mining. They will understand what data exploration means, the difference between supervised and unsupervised learning and will become familiar with algorithms such as K-means clustering, decision trees, naïve Bayes and (feed forward) neural networks. Further, they will know how to evaluate the models produced by those algorithms. They will be able to run and evaluate those algorithms with the tool RapidMiner.

Skills:
The students are able to understand basic machine learning algorithms especially k-means clustering, decision trees, naïve Bayes and (feed forward) neural networks and make use of the tool RapidMiner to run and evaluate these algorithms on datasets.

Sisältö

- Data, data exploration and data visualization.
- Supervised and unsupervised algorithms.
- Distance, K-means clustering, properties and limits.
- Decision trees, Gini-index and entropy.
- Confusion matrix, accuracy, precision, recall, ROC curves.
- Naïve Bayes.
- Formal neuron, multi-layer perceptron network and feed-forward neural network.
- Back-propagation algorithm.

Esitietovaatimukset

Basic mathematics, for example, linear algebra, vectors, probabilities and so on.

Lisätietoja opiskelijoille

Bring your own laptop.

Arviointiasteikko

0-5

Arviointikriteerit arvosanalle hyväksytty

All exercises will have to be made, and a small report with answers, explanation and appropriate screenshots of the RapidMiner process should be written and handed in for each assignment. Approval for all assignments by the teacher will be necessary to obtain the 3 ECTS.

Siirry alkuun