Skip to main content

Deep learning 1 (5 ECTS)

Code: C-02473-TT00CC66-3004

General information


Enrollment
30.12.2024 - 06.02.2025
Registration for the implementation has ended.
Timing
01.01.2025 - 31.07.2025
Implementation is running.
Number of ECTS credits allocated
5 ECTS
Institution
Kajaani University of Applied Sciences, Opintojakso järjestetään verkkototeutuksena kevätlukukaudella, lukujärjestyksen mukaisesti. Aloitusluento viikolla 2 Q&A luennot n. 2 viikon välein klo 17 jälkeen Suositeltu suoritusaika jakso 3 (1.1.-16.3.2025) Sallittu suoritusaika 1.1.-30.4.2025
Teaching languages
Finnish
Seats
0 - 10
No reservations found for implementation C-02473-TT00CC66-3004!

Location and time

Opintojakso järjestetään verkkototeutuksena kevätlukukaudella, lukujärjestyksen mukaisesti. Aloitusluento viikolla 2 Q&A luennot n. 2 viikon välein klo 17 jälkeen Suositeltu suoritusaika jakso 3 (1.1.-16.3.2025) Sallittu suoritusaika 1.1.-30.4.2025

Exam schedules

Ei sisällä tenttiä. Harjoitustehtävien palautus 30.4.2025 mennessä.

Completion alternatives

Ei vaihtoehtoista suoritustapaa.

Student workload

Opintojakson laajuus on 5op, mikä vastaa n. 135 tuntia opiskelijan työtä.

Content scheduling

Kuvataan Repussa.

Assessment criteria, satisfactory (1-2)

Arvosanaan 1 vaaditaan kaikkien tehtävien palautus ja 50% kurssin pisteistä. Lisäksi palautetuista kurssin harjoituksista on käytävä ilmi, että opiskelija osaa ottaa käyttöön Pytorch -ympäristön, ladata siihen valmiiksi opetetun mallin ja ajaa sitä.

Assessment criteria, good (3-4)

Arvosanaan 3-4 vaaditaan kaikkien tehtävien palautus ja n. 70% kurssin harjoitusten pisteistä. Palautetut tehtävät toimivat ja harjoitusten pohdinta-osiot on tehty.

Assessment criteria, excellent (5)

Arvosanaan 5 vaaditaan n. 90% kurssin harjoitusten pisteistä. Tämä tarkoittaa käytännössä, että kaikki palautettu koodi toimii ja harjoitusten pohdinta-osiot on tehty kiitettävästi.

Teaching methods

Kurssin sisältö ja ohjeistus käydään lävitse aloitusluennolla (n. 2h), joka on katsottavissa myös tallenteena myöhemmin. Kurssilla ei ole erillisiä luentoja, vaan kurssin luentomateriaalit on saatavilla videoina. Kurssin materiaalit ja tehtävät ovat Moodlen Reppu-ympäristössä, luentovideot Youtubessa. Kurssilla ei ole erillistä tenttiä, vaan kurssin suoritus perustuu kurssin harjoitusten palauttamiseen. Harjoitukset tehdään jupyterlab -ympäristössä. Kurssin läpäisy edellyttää kurssin kaikkien tehtävien palauttamisen. Kurssin aikana järjestetään erillisiä kysy-vastaa -sessioita, joissa voi kysyä epäselvistä asioista ja saada apua tehtävien kanssa. Kurssin keskustelu tapahtuu kurssin discord -kanavalla.

Evaluation scale

0 - 5

Methods of completion

Online learning; Opening lecture, lecture recordings, exercises, discussion on the online platform. The implementation methods are described in more detail in connection with the implementation.

Methods of completion

Lectures (introductory lecture + lecture recordings) and exercises.

Go back to top of page