Artificial Intelligence with Python (5 cr)
Code: TI00FA69-3008
General information
- Enrollment
-
15.02.2025 - 16.03.2025
Registration for the implementation has ended.
- Timing
-
17.03.2025 - 31.07.2025
Implementation is running.
- Number of ECTS credits allocated
- 5 cr
- Mode of delivery
- On-campus
- Unit
- (2019-2024) School of ICT
- Teaching languages
- English
- Degree programmes
- Information and Communication Technology
- Teachers
- Kirpal Singh
- Groups
-
LT6424SProfessional Development Program in Information Technology
- Course
- TI00FA69
Implementation has 15 reservations. Total duration of reservations is 45 h 0 min.
Time | Topic | Location |
---|---|---|
Tue 18.03.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD758
Oppimistila
|
Thu 20.03.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD759
Oppimistila
|
Tue 25.03.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD758
Oppimistila
|
Thu 27.03.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD759
Oppimistila
|
Tue 01.04.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD758
Oppimistila
|
Thu 03.04.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD759
Oppimistila
|
Tue 08.04.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD758
Oppimistila
|
Thu 10.04.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD759
Oppimistila
|
Tue 15.04.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD758
Oppimistila
|
Thu 17.04.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD759
Oppimistila
|
Tue 22.04.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD758
Oppimistila
|
Thu 24.04.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD759
Oppimistila
|
Tue 29.04.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD758
Oppimistila
|
Tue 06.05.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD758
Oppimistila
|
Thu 08.05.2025 time 13:00 - 16:00 (3 h 0 min) |
Tekoälyn perusteet Pythonilla TI00FA69-3008 |
KMD759
Oppimistila
|
Objective
After completing a course, student has learned what are the basic tehniques to manifest artificial intelligence using Python Programming Language in practise.
Content
- Python Quick Recap
- Python Arrays, Tables, Vectors, Matrices
- AI: Short Description
- AI: Regression 1
- AI: Regression 2
- AI: Classification 1
- AI: Classification 2
- AI: Miscellanae
Evaluation scale
0-5
Assessment methods and criteria
Evaluation criteria - Satisfactory (1–2)
Basic understanding of AI concepts and Python tools:
• The student demonstrates basic understanding of AI concepts such as regression and classification.
• Can use Python to perform simple data manipulation (e.g., arrays, matrices).
• Can implement and explain basic regression or classification models using pre-existing templates.
• Requires guidance for model selection and evaluation.
________________________________________
Evaluation criteria - Good (3–4)
Independent application and explanation of core AI techniques:
• The student can implement regression and classification models using scikit-learn with appropriate preprocessing.
• Can evaluate model performance using standard metrics (e.g., accuracy, MSE).
• Can explain the differences between models and choose suitable ones for a given dataset.
• Shows some independent problem-solving and tuning of models.
________________________________________
Evaluation criteria - Excellent (5)
Advanced problem-solving, critical thinking, and elegant solutions:
• The student shows mastery in selecting and implementing appropriate AI models and techniques.
• Can clearly justify model choices and preprocessing steps based on data characteristics.
• Demonstrates ability to compare and improve models using metrics and visualizations.
• Provides well-structured, efficient, and readable code with critical reflection on model limitations and improvements.
________________________________________
Evaluation criteria - Approved
Student has achieved the course objectives fairly. Student will be able to identify, define and use the course subject area’s concepts and models. Student understands the criteria and principles of the expertise development.
Objective
After completing a course, student has learned what are the basic tehniques to manifest artificial intelligence using Python Programming Language in practise.
Content
- Python Quick Recap
- Python Arrays, Tables, Vectors, Matrices
- AI: Short Description
- AI: Regression 1
- AI: Regression 2
- AI: Classification 1
- AI: Classification 2
- AI: Miscellanae