Skip to main content

Statistics (5 ECTS)

Code: TU00DZ52-3010

General information


Enrollment
05.05.2025 - 17.08.2025
Enrollment is ongoing
Enroll to the implementation in OMA
Timing
18.08.2025 - 14.12.2025
The implementation has not yet started.
Number of ECTS credits allocated
5 ECTS
Mode of delivery
On-campus
Unit
School of ICT and Industrial Management
Campus
Karaportti 2
Teaching languages
Finnish
Degree programmes
Industrial Management
Teachers
Rakel Peltola
Groups
TXQ24SCM
Industrial Management, Supply Chain Management
TXQ24ICT
Industrial Management, ICT Business
TXQ24K
Industrial Management, Double Degree
Course
TU00DZ52

Implementation has 32 reservations. Total duration of reservations is 96 h 0 min.

Time Topic Location
Tue 19.08.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KMD758 Oppimistila
Fri 22.08.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Tue 26.08.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KMD758 Oppimistila
Fri 29.08.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Tue 02.09.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KMD758 Oppimistila
Fri 05.09.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Tue 09.09.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KMD758 Oppimistila
Fri 12.09.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Tue 16.09.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KMD758 Oppimistila
Fri 19.09.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Tue 23.09.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KMD758 Oppimistila
Fri 26.09.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Tue 30.09.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KMD758 Oppimistila
Fri 03.10.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Tue 07.10.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KMD758 Oppimistila
Fri 10.10.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Mon 20.10.2025 time 09:00 - 12:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME551 Oppimistila
Fri 24.10.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Mon 27.10.2025 time 09:00 - 12:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME551 Oppimistila
Fri 31.10.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Mon 03.11.2025 time 09:00 - 12:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME551 Oppimistila
Fri 07.11.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Mon 10.11.2025 time 09:00 - 12:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME551 Oppimistila
Fri 14.11.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Mon 17.11.2025 time 09:00 - 12:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME551 Oppimistila
Fri 21.11.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Mon 24.11.2025 time 09:00 - 12:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME551 Oppimistila
Fri 28.11.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Mon 01.12.2025 time 09:00 - 12:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME551 Oppimistila
Fri 05.12.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Mon 08.12.2025 time 09:00 - 12:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME551 Oppimistila
Fri 12.12.2025 time 13:00 - 16:00
(3 h 0 min)
Tilastomatematiikka TU00DZ52-3010
KME661 Oppimistila
Changes to reservations may be possible.

Learning outcomes

The student understands how statistical methods and analysis can be used in decision making.

Content

Probability Calculations
Statistical Methods

Evaluation scale

0-5

Assessment criteria, satisfactory (1)

The student has achieved the course objectives fairly. Students will be able to identify, define and use the concepts and models in the subject area. The student understands the criteria and principles of the expertise development

Assessment criteria, good (3)

The student has achieved the course objectives well, even though the knowledge and skills need improvement in some areas. The student is able to define the course concepts and models and is able to justify the analysis. The student is able to apply the knowledge in study and work situations in the own field. The student understands the importance of expertise in the field of business and is able to analyze his/her own expertise.

Assessment criteria, excellent (5)

The student has achieved the objectives of the course with excellent marks. The student masters commendably the concepts and models in the course. The student is able to make justified and fluent analysis and to present concrete development measures. The students are well prepared to apply their knowledge in study and work situations. Students are able to analyze the business sector expertise and the evolvement of their own expertise.

Assessment criteria, approved/failed

The student has achieved the course objectives fairly. Students will be able to identify, define and use the concepts and models in the subject area. The student understands the criteria and principles of the expertise development.

Go back to top of page