Data Mining in Practice (3 op)
Toteutuksen tunnus: TX00FB50-3002
Toteutuksen perustiedot
- Ilmoittautumisaika
-
02.05.2023 - 03.08.2023
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
07.08.2023 - 11.08.2023
Toteutus on päättynyt.
- Opintopistemäärä
- 3 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- (2019-2024) ICT ja tuotantotalous
- Toimipiste
- Leiritie 1
- Opetuskielet
- englanti
- Paikat
- 0 - 40
- Koulutus
- Degree Programme in Information Technology
Toteutuksella on 5 opetustapahtumaa joiden yhteenlaskettu kesto on 18 t 45 min.
Aika | Aihe | Tila |
---|---|---|
Ma 07.08.2023 klo 17:00 - 20:45 (3 t 45 min) |
Data Mining in Practice TX00FB50-3002 |
MMC304
Oppimistila
|
Ti 08.08.2023 klo 17:00 - 20:45 (3 t 45 min) |
Data Mining in Practice TX00FB50-3002 |
MMC304
Oppimistila
|
Ke 09.08.2023 klo 17:00 - 20:45 (3 t 45 min) |
Data Mining in Practice TX00FB50-3002 |
MMC304
Oppimistila
|
To 10.08.2023 klo 17:00 - 20:45 (3 t 45 min) |
Data Mining in Practice TX00FB50-3002 |
MMC304
Oppimistila
|
Pe 11.08.2023 klo 17:00 - 20:45 (3 t 45 min) |
Data Mining in Practice TX00FB50-3002 |
MMC304
Oppimistila
|
Tavoitteet
By the end of the module, students should be able to:
- Develop an appreciation for what is involved in machine learning (data mining) from data
- Understand a wide variety of learning algorithms
- Understand how to evaluate models generated from data
- Apply the algorithms to solve real problems, optimize the models learned and report on the expected performance
Transferable skills:
- Mathematical analysis of learning methods.
- Evaluation of algorithms.
- Programming skills in Python
Sisältö
This course aims to provide students with an in-depth introduction to the main topics of Machine Learning.
It will cover some of the main models and algorithms for regression, classification and clustering. Topics such as linear and logistic regression, classification trees, rules, SVMs, neural networks, clustering, feature selection and dimensionality reduction. Visualisation and evaluation of machine
learning models.
Oppimateriaalit
Bibliography
Jake VanderPlas. Python Data Science Handbook,
https://jakevdp.github.io/PythonDataScienceHandbook/
Ian Witten, Eibe Frank, Mark Hall and Chris Pal, Data Mining: Practical Machine Learning Tools
and Techniques, 4th Edt, 2016
Other bibliography
Mitchell T, Machine Learning, McGraw-Hill, 1997
S. Rogers and M. Girolami, A first course in Machine Learning, CRC Press, 2011
C. Bishop, Pattern Recognition and Machine Learning, 2007
D. Barber, Bayesian Reasoning and Machine Learning, 2012
Other online references
https://www.w3schools.com/python/python_ml_getting_started.asp
https://github.com/rasbt/python-machine-learning-book-3rd-edition
Lisätietoja opiskelijoille
Students should bring their own laptop.
Arviointiasteikko
0-5
Esitietovaatimukset
The course will use Python and/or R programming languages.
Some familiarity with linear algebra, probability theory.