Skip to main content

Finite Element Method (5 cr)

Code: TX00BV15-3007

General information


Enrollment
01.05.2023 - 31.05.2023
Registration for the implementation has ended.
Timing
21.08.2023 - 17.12.2023
Implementation has ended.
Number of ECTS credits allocated
5 cr
Mode of delivery
On-campus
Unit
(2019-2024) School of Automotive and Mechanical Engineering
Campus
Leiritie 1
Teaching languages
Finnish
Degree programmes
Mechanical Engineering
Teachers
Jyrki Kullaa
Teacher in charge
Jyrki Kullaa
Course
TX00BV15

Implementation has 20 reservations. Total duration of reservations is 53 h 0 min.

Time Topic Location
Tue 22.08.2023 time 11:00 - 14:00
(3 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA222 Oppimistila
Wed 23.08.2023 time 11:00 - 13:00
(2 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMB253 IT-Tila
Tue 05.09.2023 time 11:00 - 14:00
(3 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA222 Oppimistila
Wed 06.09.2023 time 11:00 - 13:00
(2 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMB253 IT-Tila
Tue 12.09.2023 time 11:00 - 14:00
(3 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA222 Oppimistila
Wed 13.09.2023 time 11:00 - 13:00
(2 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMB253 IT-Tila
Tue 19.09.2023 time 11:00 - 14:00
(3 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA222 Oppimistila
Wed 20.09.2023 time 11:00 - 13:00
(2 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMB253 IT-Tila
Tue 26.09.2023 time 11:00 - 14:00
(3 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA222 Oppimistila
Wed 27.09.2023 time 11:00 - 13:00
(2 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMB253 IT-Tila
Tue 03.10.2023 time 11:00 - 14:00
(3 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA222 Oppimistila
Wed 04.10.2023 time 11:00 - 13:00
(2 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMB253 IT-Tila
Tue 10.10.2023 time 11:00 - 14:00
(3 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA222 Oppimistila
Wed 11.10.2023 time 11:00 - 13:00
(2 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMB253 IT-Tila
Tue 24.10.2023 time 11:00 - 14:00
(3 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA222 Oppimistila
Wed 25.10.2023 time 11:00 - 13:00
(2 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMB253 IT-Tila
Tue 31.10.2023 time 11:00 - 14:00
(3 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA222 Oppimistila
Wed 01.11.2023 time 11:00 - 13:00
(2 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMB253 IT-Tila
Mon 06.11.2023 time 13:00 - 17:00
(4 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA226 Oppimistila
Mon 27.11.2023 time 13:00 - 17:00
(4 h 0 min)
Lujuusopin elementtimenetelmä TX00BV15-3007
MMA226 Oppimistila
Changes to reservations may be possible.

Objective

On completion of the course, the student will be familiar with the most common element types, and know how to use them for the analysis of structures.
The student will be able to use finite element software to solve different types of problems in structural mechanics.

Content

1. Shape functions for bar and beam elements
2. Energy method in deriving stiffness matrices
3. Consistent nodal loads
4. Plane stress and plane strain
5. Rectangular and triangular elements
6. Element types in structural mechanics
7. Isoparametric elements
8. Numerical integration
9. Exercises with finite element software
10. A design project in the field of structural mechanics

Evaluation scale

0-5

Assessment criteria, satisfactory (1)

The student is familiar with the theory of bar and beam elements and can use one dimensional elements for the analysis of structures.

Assessment criteria, good (3)

The student can use plane and volume elements of structural mechanics.
The student is familiar wuth the basic theory of isoparametric elements.

Assessment criteria, excellent (5)

The student can use the finite element method independently when analyzing and designing structures.

Assessment criteria, approved/failed

The student is familiar with the theory of bar and beam elements and can use one dimensional elements for the analysis of structures.

Qualifications

Introduction to the Finite Element Method

Go back to top of page