Finite Element Method (5 cr)
Code: TX00BV15-3007
General information
- Enrollment
-
01.05.2023 - 31.05.2023
Registration for the implementation has ended.
- Timing
-
21.08.2023 - 17.12.2023
Implementation has ended.
- Number of ECTS credits allocated
- 5 cr
- Mode of delivery
- On-campus
- Unit
- (2019-2024) School of Automotive and Mechanical Engineering
- Campus
- Leiritie 1
- Teaching languages
- Finnish
- Degree programmes
- Mechanical Engineering
Implementation has 20 reservations. Total duration of reservations is 53 h 0 min.
Time | Topic | Location |
---|---|---|
Tue 22.08.2023 time 11:00 - 14:00 (3 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA222
Oppimistila
|
Wed 23.08.2023 time 11:00 - 13:00 (2 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMB253
IT-Tila
|
Tue 05.09.2023 time 11:00 - 14:00 (3 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA222
Oppimistila
|
Wed 06.09.2023 time 11:00 - 13:00 (2 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMB253
IT-Tila
|
Tue 12.09.2023 time 11:00 - 14:00 (3 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA222
Oppimistila
|
Wed 13.09.2023 time 11:00 - 13:00 (2 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMB253
IT-Tila
|
Tue 19.09.2023 time 11:00 - 14:00 (3 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA222
Oppimistila
|
Wed 20.09.2023 time 11:00 - 13:00 (2 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMB253
IT-Tila
|
Tue 26.09.2023 time 11:00 - 14:00 (3 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA222
Oppimistila
|
Wed 27.09.2023 time 11:00 - 13:00 (2 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMB253
IT-Tila
|
Tue 03.10.2023 time 11:00 - 14:00 (3 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA222
Oppimistila
|
Wed 04.10.2023 time 11:00 - 13:00 (2 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMB253
IT-Tila
|
Tue 10.10.2023 time 11:00 - 14:00 (3 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA222
Oppimistila
|
Wed 11.10.2023 time 11:00 - 13:00 (2 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMB253
IT-Tila
|
Tue 24.10.2023 time 11:00 - 14:00 (3 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA222
Oppimistila
|
Wed 25.10.2023 time 11:00 - 13:00 (2 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMB253
IT-Tila
|
Tue 31.10.2023 time 11:00 - 14:00 (3 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA222
Oppimistila
|
Wed 01.11.2023 time 11:00 - 13:00 (2 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMB253
IT-Tila
|
Mon 06.11.2023 time 13:00 - 17:00 (4 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA226
Oppimistila
|
Mon 27.11.2023 time 13:00 - 17:00 (4 h 0 min) |
Lujuusopin elementtimenetelmä TX00BV15-3007 |
MMA226
Oppimistila
|
Objective
On completion of the course, the student will be familiar with the most common element types, and know how to use them for the analysis of structures.
The student will be able to use finite element software to solve different types of problems in structural mechanics.
Content
1. Shape functions for bar and beam elements
2. Energy method in deriving stiffness matrices
3. Consistent nodal loads
4. Plane stress and plane strain
5. Rectangular and triangular elements
6. Element types in structural mechanics
7. Isoparametric elements
8. Numerical integration
9. Exercises with finite element software
10. A design project in the field of structural mechanics
Evaluation scale
0-5
Assessment criteria, satisfactory (1)
The student is familiar with the theory of bar and beam elements and can use one dimensional elements for the analysis of structures.
Assessment criteria, good (3)
The student can use plane and volume elements of structural mechanics.
The student is familiar wuth the basic theory of isoparametric elements.
Assessment criteria, excellent (5)
The student can use the finite element method independently when analyzing and designing structures.
Assessment criteria, approved/failed
The student is familiar with the theory of bar and beam elements and can use one dimensional elements for the analysis of structures.
Qualifications
Introduction to the Finite Element Method