Datatieteen ja koneoppimisen perusteetLaajuus (5 op)
Opintojakson tunnus: IT00EW28
Opintojakson perustiedot
- Laajuus
- 5 op
- Vastuuhenkilö
- Peter Hjort
Osaamistavoitteet
Kurssin suoritettuaan opiskelijalla on käsitys menetelmistä ja Pythonin tarjoamista työkaluista tiedon (datan) prosessointiin, analysointiin ja visualisointiin datatieteen ja koneoppimisen sovelluksissa. Oppilas pystyy käsittelemään tietoa eri lähteistä ja eri formaateissa ja osaa statistisen analyysin perusteet ja kuinka saadut tulokset visualisoidaan. Kurssilla oppilaat tutustuvat myös, kuinka kerättyyn tietoon pohjautuvien mallien avulla voidaan ennustaa tulevaa käytöstä.
Sisältö
• Python ohjelmointikieli ja sen käyttö tiedon prosessoinissa
• Työkalut tiedon analysointiin ja sen visualisointiin, statististen menetelmien perusteet.
• Tulevaa käytöstä ennustavat mallit.
Esitietovaatimukset
Ei esitietovaatimuksia
Arviointikriteerit, tyydyttävä (1)
Oppilas ymmärtää datatieteen ja koneoppimisen menetelmät ja työkalut ja osaa käyttää niitä tyypillisimmissä tapauksissa.
Arviointikriteerit, hyvä (3)
Oppilas osaa tyydyttävän suorituksen lisäksi soveltaa opetettuja menetelmiä hieman haastavammissa tapauksissa. Oppilaalla on myös melko hyvä näkemys menetelmien ja mallien rajoitteista.
Arviointikriteerit, kiitettävä (5)
Oppilas osaa hyvän suorituksen lisäksi soveltaa uusia menetelmiä datatieteen ja koneoppimisen tehtävissä. Hän ymmärtää menetelmien rajoitukset ja osaa arvioida kriittisesti saatuja tuloksia.