Siirry suoraan sisältöön

Data Mining in Practice (3 op)

Toteutuksen tunnus: TX00FB50-3002

Toteutuksen perustiedot


Ilmoittautumisaika
02.05.2023 - 03.08.2023
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
07.08.2023 - 11.08.2023
Toteutus on päättynyt.
Opintopistemäärä
3 op
Toteutustapa
Lähiopetus
Yksikkö
(2019-2024) ICT ja tuotantotalous
Toimipiste
Leiritie 1
Opetuskielet
englanti
Paikat
0 - 40
Koulutus
Degree Programme in Information Technology
Opettajat
Daniel Rodriguez Garcia
Ryhmät
ICTSUMMER
ICT Summer School
Opintojakso
TX00FB50

Toteutuksella on 5 opetustapahtumaa joiden yhteenlaskettu kesto on 18 t 45 min.

Aika Aihe Tila
Ma 07.08.2023 klo 17:00 - 20:45
(3 t 45 min)
Data Mining in Practice TX00FB50-3002
MMC304 Oppimistila
Ti 08.08.2023 klo 17:00 - 20:45
(3 t 45 min)
Data Mining in Practice TX00FB50-3002
MMC304 Oppimistila
Ke 09.08.2023 klo 17:00 - 20:45
(3 t 45 min)
Data Mining in Practice TX00FB50-3002
MMC304 Oppimistila
To 10.08.2023 klo 17:00 - 20:45
(3 t 45 min)
Data Mining in Practice TX00FB50-3002
MMC304 Oppimistila
Pe 11.08.2023 klo 17:00 - 20:45
(3 t 45 min)
Data Mining in Practice TX00FB50-3002
MMC304 Oppimistila
Muutokset varauksiin voivat olla mahdollisia.

Tavoitteet

By the end of the module, students should be able to:
- Develop an appreciation for what is involved in machine learning (data mining) from data
- Understand a wide variety of learning algorithms
- Understand how to evaluate models generated from data
- Apply the algorithms to solve real problems, optimize the models learned and report on the expected performance

Transferable skills:
- Mathematical analysis of learning methods.
- Evaluation of algorithms.
- Programming skills in Python

Sisältö

This course aims to provide students with an in-depth introduction to the main topics of Machine Learning.

It will cover some of the main models and algorithms for regression, classification and clustering. Topics such as linear and logistic regression, classification trees, rules, SVMs, neural networks, clustering, feature selection and dimensionality reduction. Visualisation and evaluation of machine
learning models.

Oppimateriaalit

Bibliography
Jake VanderPlas. Python Data Science Handbook,
https://jakevdp.github.io/PythonDataScienceHandbook/
Ian Witten, Eibe Frank, Mark Hall and Chris Pal, Data Mining: Practical Machine Learning Tools
and Techniques, 4th Edt, 2016

Other bibliography
Mitchell T, Machine Learning, McGraw-Hill, 1997
S. Rogers and M. Girolami, A first course in Machine Learning, CRC Press, 2011
C. Bishop, Pattern Recognition and Machine Learning, 2007
D. Barber, Bayesian Reasoning and Machine Learning, 2012

Other online references
https://www.w3schools.com/python/python_ml_getting_started.asp
https://github.com/rasbt/python-machine-learning-book-3rd-edition

Lisätietoja opiskelijoille

Students should bring their own laptop.

Arviointiasteikko

0-5

Esitietovaatimukset

The course will use Python and/or R programming languages.
Some familiarity with linear algebra, probability theory.

Siirry alkuun