Skip to main content

Discrete Mathematics (5 ECTS)

Code: TX00CD83-3023

General information


Enrollment
02.05.2023 - 22.10.2023
Registration for the implementation has ended.
Timing
23.10.2023 - 17.03.2024
Implementation has ended.
Number of ECTS credits allocated
5 ECTS
Mode of delivery
On-campus
Unit
(2019-2024) School of ICT
Campus
Karaportti 2
Teaching languages
Finnish
Degree programmes
Industrial Management
Teachers
Rakel Peltola
Groups
TXQ20SCM
Industrial Management, Supply Chain Management
TXQ20ICT
Industrial Management, ICT Business
TXQ22SCM
Industrial Management, Supply Chain Management
TXQ21ICT
Industrial Management, ICT Business
TXQ22ICT
Industrial Management, ICT Business
TXQ21SCM
Industrial Management, Supply Chain Management
Course
TX00CD83

Implementation has 15 reservations. Total duration of reservations is 30 h 0 min.

Time Topic Location
Tue 31.10.2023 time 09:00 - 11:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD550 Oppimistila
Tue 07.11.2023 time 09:00 - 11:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD550 Oppimistila
Tue 14.11.2023 time 09:00 - 11:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD550 Oppimistila
Tue 21.11.2023 time 09:00 - 11:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD550 Oppimistila
Tue 28.11.2023 time 09:00 - 11:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD550 Oppimistila
Tue 05.12.2023 time 09:00 - 11:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD550 Oppimistila
Tue 12.12.2023 time 09:00 - 11:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD550 Oppimistila
Fri 19.01.2024 time 10:00 - 12:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD758 Oppimistila
Fri 26.01.2024 time 10:00 - 12:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KME761 Oppimistila
Fri 02.02.2024 time 10:00 - 12:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD758 Oppimistila
Fri 09.02.2024 time 10:00 - 12:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD758 Oppimistila
Fri 16.02.2024 time 10:00 - 12:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD758 Oppimistila
Fri 01.03.2024 time 10:00 - 12:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD758 Oppimistila
Fri 08.03.2024 time 10:00 - 12:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD758 Oppimistila
Fri 15.03.2024 time 10:00 - 12:00
(2 h 0 min)
Diskreetti matematiikka TX00CD83-3023
KMD758 Oppimistila
Changes to reservations may be possible.

Objective

After completing this course the student will be familiar with the basic concepts and facts in logic, set theory, relations, graphs and combinatorics. The student will have a vision of possible applications. In order to model technological systems and structures the student is able to utilize discrete models.

Content

1) Logic, theory of sets, relations and functions.
2) Combinatorics.
3) Graphs.

Content scheduling

Kurssilla on 1-2 viikon välein uusi aihe:

Joukko-oppi
- joukkojen algebra, potenssijoukko, Venn-diagrammit, dualismi

Relaatiot
-järjestetty pari, karteesinen tulo
-relaation määrittely
-refleksiivinen, symmetrinen, antisymmetrinen ja transitiivinen relaatio
- ekvivalenssirelaatio
- relaatioiden erilaiset esitystavat

Kombinatoriikka
- permutaatio, variaatio, kombinaatio
- takaisinpanolla ja ilman
- multijoukot
-laatikkoperiaate

Logiikka
-peruskäsitteet
-totuustaulut
-tautologiat ja lausekkeiden sievennykset niillä
-esimerkit valehtelijoiden saarilta ja klassikkokysymyksiä, paradokseja
-päättelyketjut, induktio, deduktio, modus ponens, modus tollens

Matemaattinen induktio

Lukujärjestelmät:
-binääri, oktaali, desimaali, heksadesimaali ja muitakin
-muunnokset suuntaan ja toiseen

Boolenalgebra
-algebran idea
-Boolne laskuja
-loogiset piirit ja portit
-Karnaugh-kartta

Vekkomallit
-erityisesti binäärisiin hakupuihin liittyviä
käsitteitä ja laskuja

Further information

Vapaasti valittava opinto Tutan 2-4 vuosikurssien opiskelijoille.

Evaluation scale

0-5

Assessment criteria, satisfactory (1)

1) Logic, theory of sets, relations and functions
The student is familiar with the concepts, notation and principles associated with proposition and predicate logic, set theory, relations and functions. The student is able to solve simple problems.
2) Combinatorics
The student is familiar with combinatorial concepts, notation and principles. The student is able to solve simple problems.
3) Graphs
The student is familiar with graph theoretic concepts, notation and principles. The student is able to solve simple problems.

Assessment criteria, good (3)

1) Logic, theory of sets, relations and functions
The student has a good command of the concepts, notation and principles associated with proposition and predicate logic, set theory, relations and functions. The student is able to solve fundamental problems.
2) Combinatorics
The student has a good command of combinatorial concepts, notation and principles. The student is able to solve fundamental problems.
3) Graphs
The student has a good command of graph theoretic concepts, notation and principles. The student is able to solve fundamental problems.

Assessment criteria, excellent (5)

1) Logic, theory of sets, relations and functions
The student has a deep understanding of the concepts, notation and principles associated with proposition and predicate logic, set theory, relations and functions. The student is able to solve challenging problems.
2) Combinatorics
The student has a deep understanding of combinatorial concepts, notation and principles. The student is able to solve challenging problems.
3) Graphs
The student has a deep understanding of graph theoretic concepts, notation and principles. The student is able to solve challenging problems.

Assessment criteria, approved/failed

1) Logic, theory of sets, relations and functions
The student is familiar with the concepts, notation and principles associated with proposition and predicate logic, set theory, relations and functions. The student is able to solve simple problems.
2) Combinatorics
The student is familiar with combinatorial concepts, notation and principles. The student is able to solve simple problems.
3) Graphs
The student is familiar with graph theoretic concepts, notation and principles. The student is able to solve simple problems.

Further information

Computer exercises will be included.

Further information

Computer exercises will be included.

Go back to top of page