Discrete Mathematics (5 ECTS)
Code: TX00CD83-3023
General information
- Enrollment
-
02.05.2023 - 22.10.2023
Registration for the implementation has ended.
- Timing
-
23.10.2023 - 17.03.2024
Implementation has ended.
- Number of ECTS credits allocated
- 5 ECTS
- Mode of delivery
- On-campus
- Unit
- (2019-2024) School of ICT
- Campus
- Karaportti 2
- Teaching languages
- Finnish
- Degree programmes
- Industrial Management
- Teachers
- Rakel Peltola
- Groups
-
TXQ20SCMIndustrial Management, Supply Chain Management
-
TXQ20ICTIndustrial Management, ICT Business
-
TXQ22SCMIndustrial Management, Supply Chain Management
-
TXQ21ICTIndustrial Management, ICT Business
-
TXQ22ICTIndustrial Management, ICT Business
-
TXQ21SCMIndustrial Management, Supply Chain Management
- Course
- TX00CD83
Implementation has 15 reservations. Total duration of reservations is 30 h 0 min.
Time | Topic | Location |
---|---|---|
Tue 31.10.2023 time 09:00 - 11:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD550
Oppimistila
|
Tue 07.11.2023 time 09:00 - 11:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD550
Oppimistila
|
Tue 14.11.2023 time 09:00 - 11:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD550
Oppimistila
|
Tue 21.11.2023 time 09:00 - 11:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD550
Oppimistila
|
Tue 28.11.2023 time 09:00 - 11:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD550
Oppimistila
|
Tue 05.12.2023 time 09:00 - 11:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD550
Oppimistila
|
Tue 12.12.2023 time 09:00 - 11:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD550
Oppimistila
|
Fri 19.01.2024 time 10:00 - 12:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD758
Oppimistila
|
Fri 26.01.2024 time 10:00 - 12:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KME761
Oppimistila
|
Fri 02.02.2024 time 10:00 - 12:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD758
Oppimistila
|
Fri 09.02.2024 time 10:00 - 12:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD758
Oppimistila
|
Fri 16.02.2024 time 10:00 - 12:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD758
Oppimistila
|
Fri 01.03.2024 time 10:00 - 12:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD758
Oppimistila
|
Fri 08.03.2024 time 10:00 - 12:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD758
Oppimistila
|
Fri 15.03.2024 time 10:00 - 12:00 (2 h 0 min) |
Diskreetti matematiikka TX00CD83-3023 |
KMD758
Oppimistila
|
Objective
After completing this course the student will be familiar with the basic concepts and facts in logic, set theory, relations, graphs and combinatorics. The student will have a vision of possible applications. In order to model technological systems and structures the student is able to utilize discrete models.
Content
1) Logic, theory of sets, relations and functions.
2) Combinatorics.
3) Graphs.
Content scheduling
Kurssilla on 1-2 viikon välein uusi aihe:
Joukko-oppi
- joukkojen algebra, potenssijoukko, Venn-diagrammit, dualismi
Relaatiot
-järjestetty pari, karteesinen tulo
-relaation määrittely
-refleksiivinen, symmetrinen, antisymmetrinen ja transitiivinen relaatio
- ekvivalenssirelaatio
- relaatioiden erilaiset esitystavat
Kombinatoriikka
- permutaatio, variaatio, kombinaatio
- takaisinpanolla ja ilman
- multijoukot
-laatikkoperiaate
Logiikka
-peruskäsitteet
-totuustaulut
-tautologiat ja lausekkeiden sievennykset niillä
-esimerkit valehtelijoiden saarilta ja klassikkokysymyksiä, paradokseja
-päättelyketjut, induktio, deduktio, modus ponens, modus tollens
Matemaattinen induktio
Lukujärjestelmät:
-binääri, oktaali, desimaali, heksadesimaali ja muitakin
-muunnokset suuntaan ja toiseen
Boolenalgebra
-algebran idea
-Boolne laskuja
-loogiset piirit ja portit
-Karnaugh-kartta
Vekkomallit
-erityisesti binäärisiin hakupuihin liittyviä
käsitteitä ja laskuja
Further information
Vapaasti valittava opinto Tutan 2-4 vuosikurssien opiskelijoille.
Evaluation scale
0-5
Assessment criteria, satisfactory (1)
1) Logic, theory of sets, relations and functions
The student is familiar with the concepts, notation and principles associated with proposition and predicate logic, set theory, relations and functions. The student is able to solve simple problems.
2) Combinatorics
The student is familiar with combinatorial concepts, notation and principles. The student is able to solve simple problems.
3) Graphs
The student is familiar with graph theoretic concepts, notation and principles. The student is able to solve simple problems.
Assessment criteria, good (3)
1) Logic, theory of sets, relations and functions
The student has a good command of the concepts, notation and principles associated with proposition and predicate logic, set theory, relations and functions. The student is able to solve fundamental problems.
2) Combinatorics
The student has a good command of combinatorial concepts, notation and principles. The student is able to solve fundamental problems.
3) Graphs
The student has a good command of graph theoretic concepts, notation and principles. The student is able to solve fundamental problems.
Assessment criteria, excellent (5)
1) Logic, theory of sets, relations and functions
The student has a deep understanding of the concepts, notation and principles associated with proposition and predicate logic, set theory, relations and functions. The student is able to solve challenging problems.
2) Combinatorics
The student has a deep understanding of combinatorial concepts, notation and principles. The student is able to solve challenging problems.
3) Graphs
The student has a deep understanding of graph theoretic concepts, notation and principles. The student is able to solve challenging problems.
Assessment criteria, approved/failed
1) Logic, theory of sets, relations and functions
The student is familiar with the concepts, notation and principles associated with proposition and predicate logic, set theory, relations and functions. The student is able to solve simple problems.
2) Combinatorics
The student is familiar with combinatorial concepts, notation and principles. The student is able to solve simple problems.
3) Graphs
The student is familiar with graph theoretic concepts, notation and principles. The student is able to solve simple problems.
Further information
Computer exercises will be included.
Further information
Computer exercises will be included.