Siirry suoraan sisältöön

Tekoälyn perusteet Pythonilla (5 op)

Toteutuksen tunnus: TI00FA69-3009

Toteutuksen perustiedot


Ilmoittautumisaika
02.12.2024 - 31.12.2024
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
01.01.2025 - 16.03.2025
Toteutus on päättynyt.
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
(2019-2024) ICT ja tuotantotalous
Opetuskielet
englanti
Koulutus
Tieto- ja viestintätekniikan tutkinto-ohjelma
Opettajat
Kirpal Singh
Ryhmät
TXL24K1SE
Tilauskoulutus, Information Technology
Opintojakso
TI00FA69

Toteutuksella on 8 opetustapahtumaa joiden yhteenlaskettu kesto on 56 t 0 min.

Aika Aihe Tila
Ke 15.01.2025 klo 09:00 - 16:00
(7 t 0 min)
Artificial Intelligence with Python TI00FA69-3009
KMD758 Oppimistila
Ke 22.01.2025 klo 09:00 - 16:00
(7 t 0 min)
Artificial Intelligence with Python TI00FA69-3009
KMD758 Oppimistila
Ke 29.01.2025 klo 09:00 - 16:00
(7 t 0 min)
Artificial Intelligence with Python TI00FA69-3009
KMC565 Digitila
Ke 05.02.2025 klo 09:00 - 16:00
(7 t 0 min)
Artificial Intelligence with Python TI00FA69-3009
KMC565 Digitila
Ke 12.02.2025 klo 09:00 - 16:00
(7 t 0 min)
Artificial Intelligence with Python TI00FA69-3009
KMC565 Digitila
Ke 26.02.2025 klo 09:00 - 16:00
(7 t 0 min)
Artificial Intelligence with Python TI00FA69-3009
KMC565 Digitila
Ke 05.03.2025 klo 09:00 - 16:00
(7 t 0 min)
Artificial Intelligence with Python TI00FA69-3009
KMC565 Digitila
Ke 12.03.2025 klo 09:00 - 16:00
(7 t 0 min)
Artificial Intelligence with Python TI00FA69-3009
KMC565 Digitila
Muutokset varauksiin voivat olla mahdollisia.

Tavoitteet

After completing a course, student has learned what are the basic tehniques to manifest artificial intelligence using Python Programming Language in practise.

Sisältö

- Python Quick Recap
- Python Arrays, Tables, Vectors, Matrices
- AI: Short Description
- AI: Regression 1
- AI: Regression 2
- AI: Classification 1
- AI: Classification 2
- AI: Miscellanae

Arviointiasteikko

0-5

Arviointimenetelmät ja arvioinnin perusteet

Evaluation criteria - Satisfactory (1–2)
Basic understanding of AI concepts and Python tools:
• The student demonstrates basic understanding of AI concepts such as regression and classification.
• Can use Python to perform simple data manipulation (e.g., arrays, matrices).
• Can implement and explain basic regression or classification models using pre-existing templates.
• Requires guidance for model selection and evaluation.
________________________________________
Evaluation criteria - Good (3–4)

Independent application and explanation of core AI techniques:
• The student can implement regression and classification models using scikit-learn with appropriate preprocessing.
• Can evaluate model performance using standard metrics (e.g., accuracy, MSE).
• Can explain the differences between models and choose suitable ones for a given dataset.
• Shows some independent problem-solving and tuning of models.
________________________________________
Evaluation criteria - Excellent (5)

Advanced problem-solving, critical thinking, and elegant solutions:
• The student shows mastery in selecting and implementing appropriate AI models and techniques.
• Can clearly justify model choices and preprocessing steps based on data characteristics.
• Demonstrates ability to compare and improve models using metrics and visualizations.
• Provides well-structured, efficient, and readable code with critical reflection on model limitations and improvements.

________________________________________
Evaluation criteria - Approved

Student has achieved the course objectives fairly. Student will be able to identify, define and use the course subject area’s concepts and models. Student understands the criteria and principles of the expertise development.

Siirry alkuun