Skip to main content

Data Handling and Machine Learning (5 cr)

Code: TX00EY32-3006

General information


Enrollment
02.12.2024 - 14.01.2025
Registration for the implementation has ended.
Timing
13.01.2025 - 16.03.2025
Implementation has ended.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
On-campus
Unit
(2019-2024) School of ICT
Campus
Myllypurontie 1
Teaching languages
Finnish
Seats
0 - 35
Degree programmes
Information and Communication Technology
Teachers
Juha Kopu
Vesa Ollikainen
Groups
TVT23K-O
Ohjelmistotuotanto
Course
TX00EY32

Implementation has 15 reservations. Total duration of reservations is 42 h 0 min.

Time Topic Location
Tue 14.01.2025 time 09:00 - 12:00
(3 h 0 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 14.01.2025 time 13:00 - 16:00
(3 h 0 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 21.01.2025 time 09:00 - 12:00
(3 h 0 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 21.01.2025 time 13:00 - 16:00
(3 h 0 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 28.01.2025 time 09:30 - 12:00
(2 h 30 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 28.01.2025 time 13:00 - 16:00
(3 h 0 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 04.02.2025 time 09:30 - 12:00
(2 h 30 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 04.02.2025 time 13:00 - 16:00
(3 h 0 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 11.02.2025 time 09:30 - 12:00
(2 h 30 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 11.02.2025 time 13:00 - 16:00
(3 h 0 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 25.02.2025 time 09:30 - 12:00
(2 h 30 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 25.02.2025 time 13:00 - 16:00
(3 h 0 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 04.03.2025 time 09:30 - 12:00
(2 h 30 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 04.03.2025 time 13:00 - 16:00
(3 h 0 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Tue 11.03.2025 time 09:30 - 12:00
(2 h 30 min)
Datan käsittely ja koneoppiminen TX00EY32-3006
MPA5027 Oppimistila
Changes to reservations may be possible.

Objective

After completion of the course, the student
• understands the possibilities in data handling, modelling and, particularly, machine learning
• has hands-on experience in data storage, retrieval, and manipulation as well as the methods and tools in machine learning.

Content

• Large volumes of data in ICT business: applicability, models, opportunities, and processes, legislative and ethical constraints
• Data acquisition and preprocessing
• Data management solutions
• Machine learning methods (classification, association analysis, clustering, prediction of numeric values) , their fields of use and applicability
• Machine learning software
• Validation and visualisation of results
• Machine learning in natural language processing

Evaluation scale

0-5

Assessment criteria, satisfactory (1)

The student
• has achieved the objectives of the course to a satisfactory level
• is able to identify and define the concepts, models and in the subject area of the course
• has completed the learning tasks required for the course to the minimum standard.

Assessment criteria, good (3)

The student
• has achieved the objectives of the course well
• is able to identify, define and use the concepts, models and tools in the subject area of the course
• has completed the learning tasks of the course at a good level.

Assessment criteria, excellent (5)

The student
• has achieved the objectives of the course with excellent marks
• is able to identify, define and use and apply the concepts and models in the subject area of the course in a variety of ways
• has completed the learning tasks of the course at an excellent level and has put considerable own effort into their solutions.

Assessment criteria, approved/failed

The student
• has achieved the objectives of the course to a satisfactory level
• is able to identify and define the concepts, models and in the subject area of the course
• has completed the learning tasks required for the course to the minimum standard.

Go back to top of page