Skip to main content

Functions and differentials (5 cr)

Code: TX00FN65-3006

General information


Enrollment
02.12.2024 - 31.12.2024
Registration for the implementation has ended.
Timing
13.01.2025 - 11.05.2025
Implementation is running.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
On-campus
Unit
(2019-2024) Electricity and Automation Team
Campus
Leiritie 1
Teaching languages
Finnish
Degree programmes
Electrical and Automation Engineering
Teachers
Erna Piila
Groups
SA24C
Sähkö- ja automaatiotekniikan tutkinto-ohjelma, syksyllä 2024 aloittaneet, päivätoteutus
Course
TX00FN65

Implementation has 28 reservations. Total duration of reservations is 56 h 0 min.

Time Topic Location
Mon 13.01.2025 time 11:00 - 13:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 16.01.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Mon 20.01.2025 time 11:00 - 13:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 23.01.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Mon 27.01.2025 time 11:00 - 13:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 30.01.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Mon 03.02.2025 time 11:00 - 13:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Mon 10.02.2025 time 11:00 - 13:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 13.02.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Mon 24.02.2025 time 11:00 - 13:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 27.02.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Mon 03.03.2025 time 11:00 - 13:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 06.03.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Mon 10.03.2025 time 11:00 - 13:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 13.03.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Mon 17.03.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
Zoom
Thu 20.03.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
Zoom
Mon 24.03.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 27.03.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMC375 Oppimistila
Thu 03.04.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMC375 Oppimistila
Mon 07.04.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 10.04.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMC375 Oppimistila
Mon 14.04.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 17.04.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMC375 Oppimistila
Thu 24.04.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMC375 Oppimistila
Mon 28.04.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Mon 05.05.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMA111a Oppimistila
Thu 08.05.2025 time 12:00 - 14:00
(2 h 0 min)
Funktiot ja differentiaalilaskenta TX00FN65-3006
MMC375 Oppimistila
Changes to reservations may be possible.

Objective

The student knows the concept of a function and most common real-valued functions. The student can apply differential calculus in his/her professional studies. The student knows the concept of integral in mathematics.

Content

• Functions
• Differential calculus: limit, derivative and applications
• Fundamentals of integral calculus

Materials

Luentomuistiinpanot/diat jaettu kurssin Moodle-työtilassa.
Vapaaehtoinen lisälukemisto: Mikä hyvänsä insinöörimatematiikan kirja, esim. TAMplus

Teaching methods

Luennot 4 tuntia/viikko
Itsenäinen opiskelu

Student workload

Luennot ja kokeet 4 tuntia/viikko
Itsenäinen opiskelu noin 4-5 tuntia/viikko

Evaluation scale

0-5

Assessment criteria, satisfactory (1)

The student has achieved the objectives of the course to a satisfactory level. The student will be able to identify, define and use concepts and models in the subject area of the course. The student understands the prerequisites and principles of the development of expertise. The student has completed the learning tasks required for the course to the minimum standard. The student's competence has developed in such a way that he/she will be able to complete future professional studies and eventually work in the field

Assessment criteria, good (3)

The student has achieved the objectives of the course well, although there are still areas where knowledge and skills need to be improved. The student has completed the learning tasks of the course at a satisfactory or good level. The student has a good understanding of the concepts and models of the subject matter of the course and is able to carry out a reasoned analysis. The student will be able to apply what he/she has learnt in learning and working situations. Students will understand the importance of expertise in the field and be able to analyse their own expertise.

Assessment criteria, excellent (5)

The student has achieved the objectives of the course with distinction. The student has completed the learning tasks of the course at a good or excellent level. The student has an excellent command of the concepts and models of the subject matter of the course. The student is able to analyse fluently and reasonably and to propose practical development measures. The student has a good ability to apply what he/she has learned in learning and working situations. The student will be able to analyse expertise in the field and his/her own development as an expert

Assessment criteria, approved/failed

The student has achieved the objectives of the course to a satisfactory level. The student will be able to identify, define and use concepts and models in the subject area of the course. The student understands the prerequisites and principles of the development of expertise. The student has completed the learning tasks required for the course to the minimum standard. The student's competence has developed in such a way that he/she will be able to complete future professional studies and eventually work in the field

Assessment methods and criteria

Kokonaispistemäärä koostuu viikkotehtäväpisteistä (yht. 14) ja tuntitehtäväpisteistä (yht. 36). Maksimipistemäärä kurssilla 50. Pisterajat:

Pisteet --------------------- Arvosana

0-20 ---------------------------- 0
21-26 --------------------------- 1
27-32 --------------------------- 2
33-38 --------------------------- 3
39-44 -------------------------- 4
45-50 --------------------------- 5

Qualifications

The student has basic mathematical skills acquired in the course Basic Studies in Engineering Mathematics.

Go back to top of page