Skip to main content

Introduction to the Finite Element Method (5 cr)

Code: TX00BV13-3007

General information


Enrollment
28.11.2022 - 31.12.2022
Registration for the implementation has ended.
Timing
09.01.2023 - 07.05.2023
Implementation has ended.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
On-campus
Unit
(2019-2024) School of Automotive and Mechanical Engineering
Campus
Leiritie 1
Teaching languages
Finnish
Degree programmes
Mechanical Engineering
Teachers
Jyrki Kullaa
Teacher in charge
Jyrki Kullaa
Course
TX00BV13

Implementation has 8 reservations. Total duration of reservations is 21 h 0 min.

Time Topic Location
Wed 08.03.2023 time 12:00 - 14:00
(2 h 0 min)
Lujuusopin elementtimenetelmän perusteet TX00BV13-3007
MMB344 IT-Tila, CAD
Thu 09.03.2023 time 12:00 - 15:00
(3 h 0 min)
Lujuusopin elementtimenetelmän perusteet TX00BV13-3007
MMA227 Oppimistila
Wed 15.03.2023 time 12:00 - 14:00
(2 h 0 min)
Lujuusopin elementtimenetelmän perusteet TX00BV13-3007
MMB344 IT-Tila, CAD
Thu 16.03.2023 time 12:00 - 15:00
(3 h 0 min)
Lujuusopin elementtimenetelmän perusteet TX00BV13-3007
MMA227 Oppimistila
Wed 22.03.2023 time 12:00 - 14:00
(2 h 0 min)
Lujuusopin elementtimenetelmän perusteet TX00BV13-3007
MMB344 IT-Tila, CAD
Thu 23.03.2023 time 12:00 - 15:00
(3 h 0 min)
Lujuusopin elementtimenetelmän perusteet TX00BV13-3007
MMA227 Oppimistila
Tue 11.04.2023 time 12:00 - 15:00
(3 h 0 min)
Lujuusopin elementtimenetelmän perusteet uusintakoe #1
MMA227 Oppimistila
Mon 24.04.2023 time 12:00 - 15:00
(3 h 0 min)
FEM perusteet uusintakoe #2 Värähtelymekaniikan uusintakoe #1
MMA227 Oppimistila
Changes to reservations may be possible.

Objective

On completion of the course, the student will be familiar with the basics of the finite element method, and able to perform linear static analyses using commercial finite element software.

Content

1. Maxrix calculus
2. Introduction to the finite element method
3. Spring element
4. Bar element
5. Beam element
6. Solving for displacements, computing reaction forces and element forces
7. Use of finite element software

Evaluation scale

0-5

Assessment criteria, satisfactory (1)

The student knows the basics of matrix algebra.
The student can discretize a truss or a frame structure, form the element stiffness matrices, assemble the structure’s stiffness matrix, and solve for the unknown nodal displacements.
The student can compute the reactions and element internal forces and draw internal force diagrams.
The student can build and use simple FE software.
The student can run linear static analyses using FE software and an example.

Assessment criteria, good (3)

The student can discretize a truss or a frame structure, can form the element stiffness matrices, assemble the structure’s stiffness matrix, and solve for the unknown nodal displacements.
The student can compute the reactions and element internal forces and draw internal force diagrams.
The student can build and use simple FE software.
The student can run linear static analyses using commercial FE software.

Assessment criteria, excellent (5)

The student knows the principles of the finite element method.
The student can discretize a truss or a frame structure, can form the element stiffness matrices, assemble the structure’s stiffness matrix, and solve for the unknown nodal displacements.
The student can compute the reactions and element internal forces and draw internal force diagrams.
The student can build simple FE software, understands how it works and can interpret the results.
The student can independently run linear static analyses using commercial FE software, interpret the results and assess their validity.

Assessment criteria, approved/failed

The student knows the basics of matrix algebra.
The student can discretize a truss or a frame structure, form the element stiffness matrices, assemble the structure’s stiffness matrix, and solve for the unknown nodal displacements.
The student can compute the reactions and element internal forces and draw internal force diagrams.
The student can build and use simple FE software.
The student can run linear static analyses using FE software and an example.

Qualifications

Machine parts design

Go back to top of page