Siirry suoraan sisältöön

Kattilatekniikka (5 cr)

Code: TX00DF54-3001

General information


Enrollment

11.08.2020 - 24.08.2020

Timing

24.08.2020 - 18.12.2020

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Puhtaat ja älykkäät ratkaisut

Campus

Leiritie 1

Teaching languages

  • Finnish

Degree programmes

  • Energia- ja ympäristötekniikan tutkinto-ohjelma

Teachers

  • Opettaja Energia ja ympäristötekniikka

Teacher in charge

Tomi Hämäläinen

Groups

  • ENE18
    Energia- ja ympäristötekniikan tutkinto-ohjelma: Energiatuotantomenetelmien pääaine
  • TXO18S1
    Energia- ja ympäristötekniikan tutkinto-ohjelma

Objective

The student will understand the control and operation of a boiler plant. The student will be familiar with various types of boilers and steam generators and their auxiliaries. The student will be familiar with the materials and structures of different boilers and steam generators.

Content

-Fuels, combustion and formation of emissions
-Structures and materials of boilers and steam generators, and superheaters
-Reducing particulate emissions, particulate matter control devices and scrubbers and sulphur emission control
-Auxiliaries of boilers and steam generators, fuel processing and handling, feedwater heater and air preheater
-Efficiencies and losses of steam generators, energy balance of steam generator
-Grate, fluidised bed combustion, pulverized fuel combustion, biomass and waste combustion, gas and oil combustion
-Heat recovery steam generator, supercritical boiler technology, recovery boilers
-Control and use of steam generators, boiler standards and safety instructions, start up and down intructions
-Boiler water treatment, waterside and gas side scaling, deposition and corrosion in steam generators

Evaluation scale

0-5

Assessment criteria, satisfactory (1)

The student knows the different boiler solutions and materials used in boilers.
The student is familiar with the various water circulation designs of boilers, and their role in the operation and construction of the boiler.
The student is able to calculate from the fuel elemental analysis the combustion air requirement, the flue gas volume generated, and flue gas concentrations.
The student can explain the different combustion methods and their advantages and disadvantages

Assessment criteria, good (3)

The student knows the different boiler solutions and materials used in boilers.
The student is familiar with the various water circulation designs of boilers, and their role in the operation and construction of the boiler.
The student is able to calculate the efficiency of the boiler and the flue combustion air ratio from the results of temperature, pressure and mass flow measurements, the combustion air requirement, the flue gas volume generated, and the flue gas concentrations.
The student can explain the different combustion methods, and their advantages and disadvantages
The student knows the principles of boiler control, the ways of safe boiler starts and stops, as well as the safety regulations

Assessment criteria, excellent (5)

The student knows the different boiler solutions, and materials used in boilers and auxiliaries.
The student is familiar with the various water circulation designs of boilers, and their role in the operation and construction of the boiler.
The student can explain the different combustion methods and their advantages and disadvantages well
The student is able to calculate the efficiency of the boiler and the flue combustion air ratio from the results of temperature, pressure and mass flow measurements
The student knows the principles of boiler control, the ways of safe boiler starts and stops, safety regulations, as well as the execution and significance of a boiler reception test.
The student is familiar with boiler water treatment and its significance to thermal surface fouling and corrosion, and to maintenance

Assessment criteria, approved/failed

The student knows the different boiler solutions and materials used in boilers.
The student is familiar with the various water circulation designs of boilers, and their role in the operation and construction of the boiler.
The student is able to calculate from the fuel elemental analysis the combustion air requirement, the flue gas volume generated, and flue gas concentrations.
The student can explain the different combustion methods and their advantages and disadvantages

Qualifications

The student has the basic mathematical and science skills. The student will understand the thermodynamics of the most important heat engines and devices used in power plants. The student understands the main sources and formation mechanisms of atmospheric pollutants. The student knows air pollution related legislation.