Lämmönsiirto ja virtaustekniikka 1Laajuus (5 cr)
Course unit code: TX00GA73
General information
- Credits
- 5 cr
Objective
The student knows how to calculate the heat flow through a wall or a cylindrical surface, as well as the thermal resistance and thermal transmission coefficient of a building part. The student can calculate the heat loss of an insulated or non-insulated pipe in a simple case. The student can calculate the pressure loss of a straight pipe and duct and pipe and duct parts. The student knows how to use pressure loss diagrams.
Content
Ideal flow. Continuity equation. Bernoulli's equation. Frictional flow. Reynolds number. Laminar and turbulent flow. Determining the coefficient of friction. Pressure loss of straight pipe and duct. Pressure loss in pipe and duct parts. Use of pressure drop diagrams. Heat flow and thermal energy. Forms of heat transfer. Heat flow through a wall and a cylindrical surface. Thermal resistance and heat transfer coefficient of a uniform layered structural part. Heat loss of uninsulated and insulated pipe.
Qualifications
Competence of the following studies:
Basics of Mathematics
Fundamentals of Physics
Assessment criteria, satisfactory (1)
The student can calculate the heat flow through a wall or a cylindrical surface, as well as the thermal resistance and heat transfer coefficient of the building part in simple problems. The student can calculate the heat loss of an insulated or non-insulated pipe in a simple case by imitating model solutions. The student can calculate the pressure loss of a straight pipe and duct and pipe and duct parts. The student knows how to use pressure loss diagrams
Assessment criteria, good (3)
In addition to above, the students are able to apply the fundamental concepts and methods associated with the course to simple problems.
Assessment criteria, excellent (5)
The students are able to apply the fundamental concepts and methods associated with the course to more demanding problems.
Assessment criteria, approved/failed
The student can calculate the heat flow through a wall or a cylindrical surface, as well as the thermal resistance and heat transfer coefficient of the building part in simple problems. The student can calculate the heat loss of an insulated or non-insulated pipe in a simple case by imitating model solutions. The student can calculate the pressure loss of a straight pipe and duct and pipe and duct parts. The student knows how to use pressure loss diagrams.