Siirry suoraan sisältöön

Structural analysis and FEM (5 op)

Toteutuksen tunnus: TX00DP15-3002

Toteutuksen perustiedot


Ilmoittautumisaika
02.05.2019 - 01.09.2019
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
28.08.2019 - 09.12.2019
Toteutus on päättynyt.
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Toimipiste
Leiritie 1
Opetuskielet
englanti
Paikat
0 - 40
Koulutus
Konetekniikan tutkinto-ohjelma
Opettajat
Jyrki Kullaa
Vastuuopettaja
Jyrki Kullaa
Opintojakso
TX00DP15
Toteutukselle TX00DP15-3002 ei löytynyt varauksia!

Tavoitteet

On completion of the course, the student will be familiar with the basics of the finite element method, and is able to perform linear static, dynamic, and buckling analyses using commercial finite element software.

Sisältö

Matrix calculus

Introduction to the finite element method

Structural elements

Solving for displacements, computing reaction forces and element forces

Usage of a finite element software

Arviointiasteikko

0-5

Arviointikriteerit arvosanalle 1 tyydyttävä

Evaluation criteria - satisfactory (1-2)

The student knows the basics of matrix algebra.

The student can discretize a truss or a frame structure, form the element stiffness matrices, assemble the structure’s stiffness matrix, and solve for the unknown nodal displacements.

The student can compute the reactions and element internal forces and draw internal force diagrams.

The student can run linear static analyses using FE software and an example.

Arviointikriteerit arvosanalle 3 hyvä

Evaluation criteria - good (3-4)

The student can discretize a truss or a frame structure, can form the element stiffness matrices, assemble the structure’s stiffness matrix, and solve for the unknown nodal displacements.

The student can compute the reactions and element internal forces and draw internal force diagrams.

The student can run linear static and buckling analyses using commercial FE software.

Arviointikriteerit arvosanalle 5 kiitettävä

Evaluation criteria - excellent (5)

The student knows the principles of the finite element method.

The student can discretize a truss or a frame structure, can form the element stiffness matrices, assemble the structure’s stiffness matrix, and solve for the unknown nodal displacements.

The student can compute the reactions and element internal forces and draw internal force diagrams.

The student can independently run linear static, dynamic, and buckling analyses using commercial FE software, interpret the results and assess their validity.

Siirry alkuun