Siirry suoraan sisältöön

Introduction to Deep Learning (3 op)

Toteutuksen tunnus: TX00FJ03-3001

Toteutuksen perustiedot


Ilmoittautumisaika
02.05.2023 - 11.08.2023
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
14.08.2023 - 18.08.2023
Toteutus on päättynyt.
Opintopistemäärä
3 op
Toteutustapa
Lähiopetus
Yksikkö
(2019-2024) ICT ja tuotantotalous
Toimipiste
Leiritie 1
Opetuskielet
englanti
Paikat
0 - 40
Koulutus
Degree Programme in Information Technology
Opettajat
Akihiro Yamashita
Ryhmät
ICTSUMMER
ICT Summer School
Opintojakso
TX00FJ03

Toteutuksella on 5 opetustapahtumaa joiden yhteenlaskettu kesto on 20 t 0 min.

Aika Aihe Tila
Ma 14.08.2023 klo 13:00 - 17:00
(4 t 0 min)
Introduction to Deep Learning TX00FJ03-3001
MMC232 IT-Tila, CAD
Ti 15.08.2023 klo 13:00 - 17:00
(4 t 0 min)
Introduction to Deep Learning TX00FJ03-3001
MMC232 IT-Tila, CAD
Ke 16.08.2023 klo 13:00 - 17:00
(4 t 0 min)
Introduction to Deep Learning TX00FJ03-3001
MMC232 IT-Tila, CAD
To 17.08.2023 klo 13:00 - 17:00
(4 t 0 min)
Introduction to Deep Learning TX00FJ03-3001
MMC232 IT-Tila, CAD
Pe 18.08.2023 klo 13:00 - 17:00
(4 t 0 min)
Introduction to Deep Learning TX00FJ03-3001
MMC232 IT-Tila, CAD
Muutokset varauksiin voivat olla mahdollisia.

Tavoitteet

This course provides an understanding of the basic mechanisms of deep learning models related with image processing. The students will learn how to develop the VGG-16 model for image recognition and the YOLO v1 algorithm for object detection from scratch. These algorithms use Convolutional Neural Network (CNN), which provides excellent performance in the field of image processing, and the main theme of this course is to learn its mechanism and application methods. This course also provides an understanding of how to use PyTorch, one the most popular framework in deep learning, including how to work with both open datasets and original datasets.

Sisältö

Day 1: Introduction to PyTorch (popular neural network framework)
- Reviews on Neural Network Basics
- Building and training simple neural networks with PyTorch
- Image recognition using Convolutional Neural Network (CNN) and some tricks

Day 2: Image recognition with deep learning
- Image recognition using VGG-16 network model
- Using pretrained models and transfer learning
- How to use original dataset for image recognition

Day 3: Object detection (1)
- An Overview of object detection problems
- Overview of YOLO v1 algorithm
- Building YOLO v1 from scratch (1)

Day 4: Object detection (2)
- Using YOLO v5
- Fine tuning for YOLO v5 with Pascal VOC dataset

Day 5: Mini-project
- Introducing various open datasets
- Experiment with open deep learning models

Arviointiasteikko

0-5

Esitietovaatimukset

It is desirable to have completed the contents of Introduction to Machine Learning course. Otherwise, object-oriented programming experience is required, especially Python programming experience is desirable. Basic knowledge of neural networks and machine learning algorithms is also desirable. In this lecture, some basic mathematical expressions such as linear algebra, calculus and statistics are used.

Siirry alkuun