Siirry suoraan sisältöön

Machine Learning with Python (10 op)

Toteutuksen tunnus: TT00EO91-3008

Toteutuksen perustiedot


Ajoitus
06.01.2024 - 31.12.2023
Toteutus on päättynyt.
Opintopistemäärä
10 op
Virtuaaliosuus
10 op
Toteutustapa
Etäopetus
Toimipiste
Karaportti 2
Opetuskielet
englanti
Paikat
0 - 5000
Koulutus
Tieto- ja viestintätekniikan tutkinto-ohjelma
Opettajat
Virve Prami
Ryhmät
ATX22_SYKSY
ATX22_syksy
Opintojakso
TT00EO91
Toteutukselle TT00EO91-3008 ei löytynyt varauksia!

Aika ja paikka

Course is online in TechClass environment and it can be done in own pace.

Oppimateriaalit

Online.

Harjoittelu- ja työelämäyhteistyö

N/A

Tenttien ajankohdat ja uusintamahdollisuudet

Online.

Kansainvälisyys

N/A

Toteutuksen valinnaiset suoritustavat

N/A

Arviointimenetelmät ja arvioinnin perusteet

Exercises 30%
Quizzes 20%
Project 40%
Essay 10%

Opiskelijan ajankäyttö ja kuormitus

Lectures = 40h
Assignments = 25h
Self-study = 40h
Quiz = 5h
Project = 20h
Essay = 5h
Total = 135 hours

Sisällön jaksotus

Up to Student her-/himself.

Opetusmenetelmät

his course is 100% virtual thanks to the comprehensive interactive material and content prepared for this course.

Course includes:
- Tutorial Videos
- Exercises
- Quiz
- Project
- Self-study

Course is online in TechClass environment and it can be done in own pace.

Arviointiasteikko

Hyväksytty/Hylätty

Arviointikriteerit, tyydyttävä (1)

- The student knows the basic concepts of machine learning.
- The student knows the general framework of machine learning algorithms and their primary types.
- The student is familiar with real-life applications of machine learning.
- The student is familiar with the history of Python and why it is essential for machine learning.
- The student knows how to set up and get started with the Jupyter Notebook for Python.
- The student is familiar with writing codes in Python programming language.
- The student is familiar with important Python libraries for machine learning.

Arviointikriteerit, hyvä (3)

- The student knows how to work with Numpy arrays and how to use different Numpy functions to operate on them.
- The student knows how to use Matplotlib to produce basic plots of data and results.
- The student knows how to use the Pandas library to work with tabular data in order to manipulate them.
- The student is familiar with the Scikit-learn library and its importance in building machine learning models.
- The student knows how to train and evaluate linear regression models using Scikit-learn.
- The student knows how to implement simple non-linear regression models using Scikit-learn.
- The student is familiar with data preprocessing and how to perform it using Pandas and Scikit-learn libraries.
Englanniksi
- The student knows how to work with Numpy arrays and how to use different Numpy functions to operate on them.
- The student knows how to use Matplotlib to produce basic plots of data and results.
- The student knows how to use the Pandas library to work with tabular data in order to manipulate them.
- The student is familiar with the Scikit-learn library and its importance in building machine learning models.
- The student knows how to train and evaluate linear regression models using Scikit-learn.
- The student knows how to implement simple non-linear regression models using Scikit-learn.
- The student is familiar with data preprocessing and how to perform it using Pandas and Scikit-learn libraries.

Arviointikriteerit, kiitettävä (5)

- The student knows how to train and evaluate logistic regression, support vector machines, K-nearest neighbors, and decision tree classifiers using Scikit-learn.
- The student knows how to tune some parameters of learning algorithms to achieve better performances.
- The student knows how to implement the PCA method using Scikit-learn for dimensionality reduction.
- The student knows how to implement the k-means method using Scikit-learn to perform clustering on unlabeled data.
- The student knows how to visualize data and model performance efficiently.
- The student knows how to use different metrics to facilitate model evaluation and selection.

Siirry alkuun