Skip to main content

Mathematics of Automation 3 (5 cr)

Code: TX00DT06-3004

General information


Enrollment

27.11.2023 - 11.02.2024

Timing

18.03.2024 - 10.05.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

School of Smart and Clean Solutions

Campus

Leiritie 1

Teaching languages

  • Finnish

Degree programmes

  • Electrical and Automation Engineering

Teachers

  • Aku Valmu
  • Raisa Kallio

Teacher in charge

Raisa Kallio

Groups

  • SA22K
    Automaatiotekniikan pääaine, keväällä 2022 aloittaneet päiväopiskelijat
  • SA21S
    Automaatiotekniikan pääaine, syksyllä 2021 aloittaneet päiväopiskelijat
  • SA20S
    Automaatiotekniikan pääaine, syksyllä 2020 aloittaneet päiväopiskelijat
  • SA21K
    Automaatiotekniikan pääaine, keväällä 2021 aloittaneet päiväopiskelijat
  • TXJ21S2A
    Automaatiotekniikan pääaine, syksyllä 2021 opintonsa aloittaneet monimuoto-opiskelijat

Objective

After completing this course, students are familiar with basics of mathematical tools of control theory, dynamic modelling, and students are familiar with basics of applied mathematics used on advanced control methods.
- Students are familiar with mathematical software tools used in modelling and simulation.

Content

1. Basics of modelling of dynamical systems
2. Mathematical basics of advanced control methods

Evaluation scale

0-5

Assessment criteria, satisfactory (1)

The student has achieved the course objectives fairly. The student will be able to identify, define and use the course subject area’s concepts and models. The student understands the criteria and principles of the expertise development. The student has completed the required learning exercises in minimum requirement level. His/her competences have developed in a way that he/she may complete the remaining studies in electrical engineering and automation technology and finally work in a suitable job position related to this field.

Assessment criteria, good (3)

The student has achieved the course objectives well, even though the knowledge and skills need improvement on some areas. The student has completed the required learning exercises in good or satisfactory level. The student is able to define the course concepts and models and is able to justify the analysis. The student is able to apply their knowledge in study and work situations. The student understands the importance of expertise in the field of electrical engineering and automation technology and is able to analyze his/her own expertise.

Assessment criteria, excellent (5)

The student has achieved the objectives of the course with excellent marks. The student master commendably the course subject area’s concepts and models. The student has completed the required learning exercises in good or excellent level. The student is able to make justified and fluent analysis and to present concrete development measures. The student is well prepared to apply their knowledge study and work situations. Students are able to analyze the expertise in electrical engineering and automation technology and the evolvement of their own expertise.

Assessment criteria, approved/failed

The student has achieved the course objectives fairly. The student will be able to identify, define and use the course subject area’s concepts and models. The student understands the criteria and principles of the expertise development. The student has completed the required learning exercises in minimum requirement level. His/her competences have developed in a way that he/she may complete the remaining studies in electrical engineering and automation technology and finally work in a suitable job position related to this field.