Skip to main content

Isostatic Structures (5 ECTS)

Code: TX00BK69-3014

General information


Enrollment
02.12.2024 - 12.01.2025
Registration for the implementation has ended.
Timing
13.01.2025 - 30.04.2025
Implementation has ended.
Number of ECTS credits allocated
5 ECTS
Mode of delivery
On-campus
Unit
Kiinteistö- ja rakennusala
Campus
Myllypurontie 1
Teaching languages
Finnish
Degree programmes
Civil Engineering
Teachers
Ahmad Shahgordi
Course
TX00BK69

Implementation has 22 reservations. Total duration of reservations is 74 h 30 min.

Time Topic Location
Tue 14.01.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA6020 Oppimistila
Tue 21.01.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA5010 Digitila
MPA5008 Digitila
Tue 28.01.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA5020 Oppimistila
MPA5010 Digitila
Tue 04.02.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA6018 Oppimistila
MPA5010 Digitila
MPA5008 Digitila
Mon 10.02.2025 time 08:00 - 10:30
(2 h 30 min)
Retake Exam
MPA5011 Digitila
MPA5024 Oppimistila
Tue 11.02.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA3018 Oppimistila
Tue 25.02.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA3008 Digitila
MPA3010 Digitila
Tue 04.03.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA3018 Oppimistila
Mon 10.03.2025 time 08:00 - 11:00
(3 h 0 min)
Retake Exam
MPA3008 Digitila
MPA3010 Digitila
Tue 11.03.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA6018 Oppimistila
Tue 18.03.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA6018 Oppimistila
Tue 25.03.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA6018 Oppimistila
Mon 31.03.2025 time 08:00 - 11:00
(3 h 0 min)
Retake Exam
MPA3008 Digitila
MPA3010 Digitila
Tue 01.04.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA6018 Oppimistila
Tue 08.04.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA3008 Digitila
MPA3010 Digitila
Tue 15.04.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA3018 Oppimistila
Tue 22.04.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA5008 Digitila
MPA5010 Digitila
Mon 28.04.2025 time 08:00 - 11:00
(3 h 0 min)
Retake Exam
MPA5011 Digitila
Tue 29.04.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA6018 Oppimistila
Tue 06.05.2025 time 08:00 - 11:30
(3 h 30 min)
Isostaattiset sauvarakenteet TX00BK69-3014
MPA5010 Digitila
MPA5008 Digitila
Mon 12.05.2025 time 08:00 - 12:00
(4 h 0 min)
Extra reservation
MPA5008 Digitila
MPA5010 Digitila
MPA5011 Digitila
Mon 19.05.2025 time 08:00 - 11:00
(3 h 0 min)
Retake Exam
MPA5011 Digitila
MPA5008 Digitila
MPA5010 Digitila
Changes to reservations may be possible.

Evaluation scale

0-5

Assessment criteria, satisfactory (1)

On completion of the course the student can
- repeat the integration of a differential equation of a deflection curve
- calculate the deflection of a beam by using Mohr’s analogy without difficulty in a simple problem
- recognise the displacement of a beam structure by using work integral
- understand Maxwell’s reciprocal theorem
- recognise the degree of statical indeterminacy
- recognise a continuous beam
- recognise force surfaces, deflection beams and assess the impact of beam span as well as rigidity on deflection, sketch deflection curves and M- and V-diagrams without calculations
- explain the influence line of an isostatic beam
- explain the structural behaviour of an isostatic arch structure
- check deflections and M-, V- and N-diagrams by computer software.

Assessment criteria, good (3)

In addition to the requirements listed above, the student can
- derive the differential equation of a deflection curve
- calculate the deflection of a beam by using Mohr’s analogy without difficulty in all problems
- determine the displacement of a beam structure with work as an integral without difficulty
- use Maxwell’s reciprocal theorem
- determine the degree of static indeterminacy
- solve the force surface of a continuous beam using tables
- draw force surfaces and deflection curves quickly and without difficulty
- solve the force surfaces of an isostatic arch structure
- draw influence lines for isostatic beams.

Assessment criteria, excellent (5)

In addition to the requirements listed above, the student can
- derive and generalise the differential equation of a deflection curve in complicated problems with boundary conditions
- calculate and justify the deflection of a beam by using Mohr’s analogy
- determine and check the displacement of a beam structure with work as an integral by using tables and integration
- describe and apply Maxwell’s reciprocal theorem and understand its significance in creating an elasticity matrix
- determine and explain the influence of the degree of static indeterminacy
- solve the force surface of a continuous beam using tables
- draw force surfaces and deflection curves for beams and frames without difficulty.

Assessment criteria, approved/failed

On completion of the course the student can
- repeat the integration of a differential equation of a deflection curve
- calculate the deflection of a beam by using Mohr’s analogy without difficulty in a simple problem
- recognise the displacement of a beam structure by using work integral
- understand Maxwell’s reciprocal theorem
- recognise the degree of statical indeterminacy
- recognise a continuous beam
- recognise force surfaces, deflection beams and assess the impact of beam span as well as rigidity on deflection, sketch deflection curves and M- and V-diagrams without calculations
- explain the influence line of an isostatic beam
- explain the structural behaviour of an isostatic arch structure
- check deflections and M-, V- and N-diagrams by computer software.

Go back to top of page