Isostatic Structures (5 ECTS)
Code: TX00BK69-3014
General information
- Enrollment
- 02.12.2024 - 12.01.2025
- Registration for the implementation has ended.
- Timing
- 13.01.2025 - 30.04.2025
- Implementation has ended.
- Number of ECTS credits allocated
- 5 ECTS
- Mode of delivery
- On-campus
- Unit
- Kiinteistö- ja rakennusala
- Campus
- Myllypurontie 1
- Teaching languages
- Finnish
- Degree programmes
- Civil Engineering
- Teachers
- Ahmad Shahgordi
- Course
- TX00BK69
Implementation has 22 reservations. Total duration of reservations is 74 h 30 min.
Time | Topic | Location |
---|---|---|
Tue 14.01.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA6020
Oppimistila
|
Tue 21.01.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA5010
Digitila
MPA5008 Digitila |
Tue 28.01.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA5020
Oppimistila
MPA5010 Digitila |
Tue 04.02.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA6018
Oppimistila
MPA5010 Digitila MPA5008 Digitila |
Mon 10.02.2025 time 08:00 - 10:30 (2 h 30 min) |
Retake Exam |
MPA5011
Digitila
MPA5024 Oppimistila |
Tue 11.02.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA3018
Oppimistila
|
Tue 25.02.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA3008
Digitila
MPA3010 Digitila |
Tue 04.03.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA3018
Oppimistila
|
Mon 10.03.2025 time 08:00 - 11:00 (3 h 0 min) |
Retake Exam |
MPA3008
Digitila
MPA3010 Digitila |
Tue 11.03.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA6018
Oppimistila
|
Tue 18.03.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA6018
Oppimistila
|
Tue 25.03.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA6018
Oppimistila
|
Mon 31.03.2025 time 08:00 - 11:00 (3 h 0 min) |
Retake Exam |
MPA3008
Digitila
MPA3010 Digitila |
Tue 01.04.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA6018
Oppimistila
|
Tue 08.04.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA3008
Digitila
MPA3010 Digitila |
Tue 15.04.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA3018
Oppimistila
|
Tue 22.04.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA5008
Digitila
MPA5010 Digitila |
Mon 28.04.2025 time 08:00 - 11:00 (3 h 0 min) |
Retake Exam |
MPA5011
Digitila
|
Tue 29.04.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA6018
Oppimistila
|
Tue 06.05.2025 time 08:00 - 11:30 (3 h 30 min) |
Isostaattiset sauvarakenteet TX00BK69-3014 |
MPA5010
Digitila
MPA5008 Digitila |
Mon 12.05.2025 time 08:00 - 12:00 (4 h 0 min) |
Extra reservation |
MPA5008
Digitila
MPA5010 Digitila MPA5011 Digitila |
Mon 19.05.2025 time 08:00 - 11:00 (3 h 0 min) |
Retake Exam |
MPA5011
Digitila
MPA5008 Digitila MPA5010 Digitila |
Evaluation scale
0-5
Assessment criteria, satisfactory (1)
On completion of the course the student can
- repeat the integration of a differential equation of a deflection curve
- calculate the deflection of a beam by using Mohr’s analogy without difficulty in a simple problem
- recognise the displacement of a beam structure by using work integral
- understand Maxwell’s reciprocal theorem
- recognise the degree of statical indeterminacy
- recognise a continuous beam
- recognise force surfaces, deflection beams and assess the impact of beam span as well as rigidity on deflection, sketch deflection curves and M- and V-diagrams without calculations
- explain the influence line of an isostatic beam
- explain the structural behaviour of an isostatic arch structure
- check deflections and M-, V- and N-diagrams by computer software.
Assessment criteria, good (3)
In addition to the requirements listed above, the student can
- derive the differential equation of a deflection curve
- calculate the deflection of a beam by using Mohr’s analogy without difficulty in all problems
- determine the displacement of a beam structure with work as an integral without difficulty
- use Maxwell’s reciprocal theorem
- determine the degree of static indeterminacy
- solve the force surface of a continuous beam using tables
- draw force surfaces and deflection curves quickly and without difficulty
- solve the force surfaces of an isostatic arch structure
- draw influence lines for isostatic beams.
Assessment criteria, excellent (5)
In addition to the requirements listed above, the student can
- derive and generalise the differential equation of a deflection curve in complicated problems with boundary conditions
- calculate and justify the deflection of a beam by using Mohr’s analogy
- determine and check the displacement of a beam structure with work as an integral by using tables and integration
- describe and apply Maxwell’s reciprocal theorem and understand its significance in creating an elasticity matrix
- determine and explain the influence of the degree of static indeterminacy
- solve the force surface of a continuous beam using tables
- draw force surfaces and deflection curves for beams and frames without difficulty.
Assessment criteria, approved/failed
On completion of the course the student can
- repeat the integration of a differential equation of a deflection curve
- calculate the deflection of a beam by using Mohr’s analogy without difficulty in a simple problem
- recognise the displacement of a beam structure by using work integral
- understand Maxwell’s reciprocal theorem
- recognise the degree of statical indeterminacy
- recognise a continuous beam
- recognise force surfaces, deflection beams and assess the impact of beam span as well as rigidity on deflection, sketch deflection curves and M- and V-diagrams without calculations
- explain the influence line of an isostatic beam
- explain the structural behaviour of an isostatic arch structure
- check deflections and M-, V- and N-diagrams by computer software.